JNK regulates FoxO-dependent autophagy in neurons.

نویسندگان

  • Ping Xu
  • Madhumita Das
  • Judith Reilly
  • Roger J Davis
چکیده

The cJun N-terminal kinase (JNK) signal transduction pathway is implicated in the regulation of neuronal function. JNK is encoded by three genes that play partially redundant roles. Here we report the creation of mice with targeted ablation of all three Jnk genes in neurons. Compound JNK-deficient neurons are dependent on autophagy for survival. This autophagic response is caused by FoxO-induced expression of Bnip3 that displaces the autophagic effector Beclin-1 from inactive Bcl-XL complexes. These data identify JNK as a potent negative regulator of FoxO-dependent autophagy in neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Protein Kinase-B on FOXO Autophagy Family Proteins (FOXO1 and FOXO3a) Following High Intensity Interval Training in the Left Ventricle of the Heart of Diabetic Rats by Streptozotocin and Nicotinamide

Background: FOXO family proteins are important factors in autophagy pathway. Protein kinase-B is an important regulator for this family that can be regulated through exercise training. Therefore, the aim of this study is to investigate the effect of protein kinase-B (PKB) on FOXO autophagy family proteins (FOXO1 and FOXO3a) following high intensity interval training (HIIT) in the left ventricle...

متن کامل

Parallel roles of transcription factors dFOXO and FER2 in the development and maintenance of dopaminergic neurons

Forkhead box (FOXO) proteins are evolutionarily conserved, stress-responsive transcription factors (TFs) that can promote or counteract cell death. Mutations in FOXO genes are implicated in numerous pathologies, including age-dependent neurodegenerative disorders, such as Parkinson's disease (PD). However, the complex regulation and downstream mechanisms of FOXOs present a challenge in understa...

متن کامل

MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson’s Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways

BACKGROUND microRNA (miR)-181a has been reported to be downregulated in Parkinson's disease (PD), but the regulatory mechanism of miR-181a on neuron apoptosis and autophagy is still poorly understood. We aimed to investigate the neuroprotective effects of miR-181a on PD in vitro. MATERIAL AND METHODS Human SK-N-SH neuroblastoma cells were incubated with different concentrations of 1-methyl-4-ph...

متن کامل

Forkhead Box Protein O3 Transcription Factor Negatively Regulates Autophagy in Human Cancer Cells by Inhibiting Forkhead Box Protein O1 Expression and Cytosolic Accumulation

FoxO proteins are important regulators in cellular metabolism and are recognized to be nodes in multiple signaling pathways, most notably those involving PI3K/AKT and mTOR. FoxO proteins primarily function as transcription factors, but recent study suggests that cytosolic FoxO1 participates in the regulation of autophagy. In the current study, we find that cytosolic FoxO1 indeed stimulates cell...

متن کامل

High-mobility group box 1 induces neuron autophagy in a rat spinal root avulsion model.

Autophagy, a tightly regulated lysosome-dependent catabolic pathway, is implicated in various pathological states in the nervous system. High-mobility group box 1 (HMGB1) is an inflammatory mediator known to be released into the local microenvironment from damaged cells. However, whether autophagy is induced and exogenous HMGB1 is involved in the process of spinal root avulsion remain unclear. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2011